

Acetylcholine-induced endothelium-dependent contractions in the SHR aorta: the Janus face of prostacyclin

¹Pascale Gluais, ¹Michel Lonchampt, ²Jason D. Morrow, ³Paul M. Vanhoutte & ^{*,1}Michel Feletou

¹Institut de Recherches Servier, 92150 Suresnes, France; ²Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A. and ³Department of Pharmacology, Faculty of Medicine, Hong Kong, China

1 In the spontaneously hypertensive rat (SHR) and aging Wistar–Kyoto rats (WKY), acetylcholine releases an endothelium-derived contracting factor (EDCF) produced by endothelial cyclooxygenase-1, which stimulates thromboxane A₂ receptors (TP receptors) on vascular smooth muscle. The purpose of the present study was to identify this EDCF by measuring changes in isometric tension and the release of various prostaglandins by acetylcholine.

2 In isolated aortic rings of SHR, U 46619, prostaglandin (PG) H₂, PGF_{2 α} , PGE₂, PGD₂, prostacyclin (PGI₂) and 8-isoprostanate, all activate TP receptors of the vascular smooth muscle to produce a contraction (U 46619>>8-isoprostanate = PGF_{2 α} = PGH₂ > PGE₂ = PGD₂ > PGI₂). The contractions produced by PGH₂ and PGI₂ were fast and transient, mimicking endothelium-dependent contractions. PGI₂ did not relax isolated aortic rings of WKY and SHR.

3 Acetylcholine evoked the endothelium-dependent release of thromboxane A₂, PGF_{2 α} , PGE₂, PGI₂ and most likely PGH₂ (PGI₂>>PGF_{2 α} >PGE₂>TXA₂>8-isoprostanate, PGD₂). Dazoxiben abolished the production of thromboxane A₂, but did not influence the endothelium-dependent contractions to acetylcholine.

4 The release of PGI₂ was significantly larger in the aorta of SHR than in WKY, and the former was more sensitive to the contractile effect of PGI₂ than the latter. The inhibition of PGI-synthase was associated with an increase in PGH₂ spillover and the enhancement of acetylcholine-induced endothelium-dependent contractions.

5 Thus, in the aorta of SHR and aging WKY, the endothelium-dependent contractions elicited by acetylcholine most likely involve the release of PGI₂ with a concomitant contribution of PGH₂.

British Journal of Pharmacology (2005) **146**, 834–845. doi:10.1038/sj.bjp.0706390; published online 12 September 2005

Keywords: Endothelium-dependent contractions; TP receptors; spontaneously hypertensive rat; prostaglandins; endo-peroxide; prostacyclin

Abbreviations: COX, cyclooxygenase; EDCF, endothelium-derived contracting factor(s); NOS, nitric oxide synthase; L-NA, *N*^G-nitro-L-arginine; SHR, spontaneously hypertensive rat; PGH₂, prostaglandin H₂; PGI₂, prostacyclin; WKY, Wistar–Kyoto rats

Introduction

Under several pathological conditions, such as hypertension, endothelium-dependent relaxations are impaired (Vanhoutte *et al.*, 2005). In the spontaneously hypertensive rat (SHR), the endothelial dysfunction is attributed to the occurrence of a concomitant endothelium-dependent contraction mediated by a yet unidentified endothelium-derived contracting factor (EDCF; Lüscher & Vanhoutte, 1986). This endothelium-dependent contraction involves the production of reactive oxygen species, the activation of endothelial cyclooxygenase (COX)-1, the diffusion of EDCF and the subsequent stimulation of thromboxane A₂ receptors (TP receptors) located on smooth muscle cells (Lüscher & Vanhoutte, 1986; Auch-Schwelk *et al.*, 1990; Kato *et al.*, 1990; Ge *et al.*, 1995; Yang *et al.*, 2002; 2003a, b; 2004).

EDCF-mediated responses are observed not only in hypertension but also in diabetes, and probably reflect the premature aging of the blood vessel wall subjected to an exaggerated oxidative stress. The information available in humans confirms that EDCF-mediated responses contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive patients (Vanhoutte *et al.*, 2005). The identification of EDCF could therefore provide new insights into the mechanism of endothelial dysfunction and potentially reveal new therapeutic targets. Various candidates have been proposed for the identity of EDCF in the SHR; they include the endo-peroxides prostaglandin H₂ (PGH₂; Ge *et al.*, 1995), prostacyclin (PGI₂; Rapoport & Williams, 1996), thromboxane A₂ (Taddei & Vanhoutte, 1993) and isoprostanes (Janssen, 2002).

The purpose of the present study was to identify the EDCF released by acetylcholine from the aortic rings of SHR and Wistar–Kyoto rats (WKY).

*Author for correspondence: Département Diabète et Maladies Métaboliques, Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France; E-mail: michel.feletou@fr.netgrs.com

Methods

Experiments were performed on thoracic aortas from 1-year-old male SHR (402 ± 6 g, $n=102$) and normotensive WKY (432 ± 8 g, $n=52$), both from Charles River (L'Arbresles, France). The rats were anesthetized with pentobarbital sodium (50 mg kg^{-1} , intraperitoneally) and the blood pressure was measured from the carotid artery (systolic blood pressure: 185 ± 5 and 105 ± 3 mmHg, in SHR and WKY, respectively; $P < 0.05$). The aorta was then dissected free, excised and placed in cold modified Krebs–Ringer bicarbonate solution of the following composition (mM): NaCl 118, KCl 4.7, CaCl₂ 2.5, MgSO₄ 1.2, KH₂SO₄ 1.2, NaHCO₃ 25.0, edetate calcium disodium 0.026, glucose 11.1 (control solution). In some aortas, the endothelium was removed from segments of various lengths by infusing a saponin solution (1 mg ml^{-1} , for 20 s) that was subsequently flushed with control solution. Then the aorta was cut into rings (4–5 mm in length). In some rings the isometric tension was recorded, while in others the release of prostanoids was determined.

Isometric tension recording

The rings were suspended in organ chambers (20 ml), which contained control solution (37°C) aerated with 95% O₂ and 5% CO₂, and were connected to a force transducer in order to record isometric contraction. They were stretched progressively to reach the optimal point of their length–active tension relationship (approximately 2 g). Drug incubation time was 45 min for most of the experiments. Concentration–response curves were obtained in a cumulative manner. Each ring was exposed to only one set of cumulative concentration of each given agonist. Contractile responses were expressed as a percentage of the reference contraction to KCl (60 mM), performed for each individual ring at the beginning of the experiment. Relaxations were expressed as a percentage of the maximal relaxation elicited by papaverine (100 μM) in rings contracted with phenylephrine.

Release of prostanoids

In order to measure the release of prostanoids, rings were placed in thermostated mini-chambers containing 1 ml of control solution (37°C) aerated with 95% O₂ and 5% CO₂. The equilibration time was 1 h during which the solution was changed every 15 min. The incubation period with drugs was 20 min and acetylcholine was applied for 10 min in the presence of the drugs. Each ring was exposed once and to a single concentration of acetylcholine. Then the aortic rings were removed and the mini-chambers were freeze-clamped in liquid nitrogen and stored at -80°C for further analysis. The rings were placed in a dry hot box (60°C for 48 h) and the dry weight was measured.

The prostanoids were measured with the following EIA kits from Cayman Chemical (Ann Arbor, MI, U.S.A.), 6-keto prostanandin F_{1 α} , thromboxane B₂, prostanandin E₂, prostanandin F_{2 α} , prostanandin D₂ MOX and 8-isoprostanone. Undiluted 50 μl samples were dosed at the exception of the 6-keto prostanandin F_{1 α} measurement, which required a systematic 50-time dilution in control solution and some samples which were subjected to a two-time dilution for the

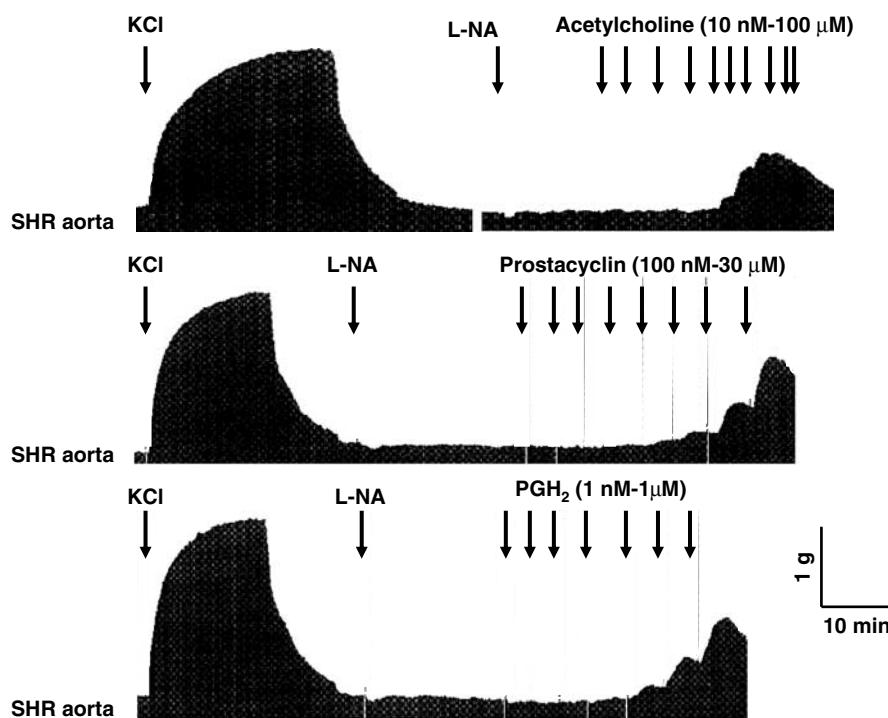
EDCF in SHR

assessment of prostanandin E₂ and prostanandin F_{2 α} . The various assays were performed as indicated by the manufacturer procedure booklet.

Additionally, the production of 8-isoprostanone was assessed by mass spectrometry as previously described (Il'Yasova *et al.*, 2004).

Drugs

Acetylcholine hydrochloride, indomethacin, isoproterenol, *N*^G-nitro-L-arginine (L-NA), papaverine, phenylephrine, SnCl₂ and tranylcypromine were obtained from Sigma (La Verpillière, France). Prostanandin F_{2 α} (PGF_{2 α}), PGH₂, prostanandin E₂ (PGE₂), prostanandin D₂ (PGD₂), prostanandin I₂ (PGI₂), iloprost, 6-keto prostanandin F_{1 α} (6-keto-PGF_{1 α}), 8-isoprostanone, 9 α ,11 α -azoprosta-5Z,13E-dien-1-oic acid (U 51605), 9,11-dideoxy-9 α ,11 α -epoxymethano prostanandin F_{2 α} (U 46619), N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS 398) and 2-[(1-oxopenetyl)oxy]-benzoic acid (valeryl salicylate) were purchased from Cayman Chemical Company (Ann Arbor, MI, U.S.A.). 3-[(6-amino-(4-chlorobenzensulfonyl)-2-methyl-5,6,7,8-tetrahydronaphth]-1-yl)propionic acid (S 18886) and dazoxiben were synthesized at the Institut de Recherches Servier (Suresnes, France). Drug concentrations are expressed as final molar concentrations in the bath solution.

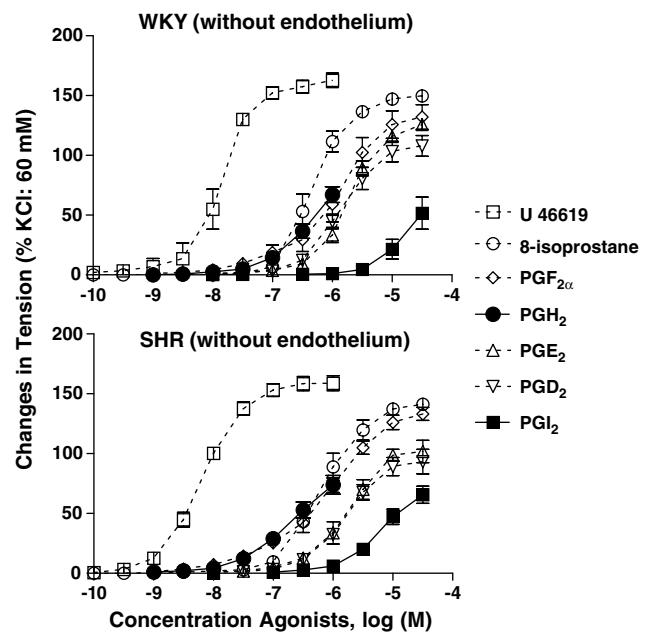

Data analysis

Data are expressed as means \pm s.e.m.; n refers to the number of rats from which the aortas were taken. The ED₂₀ (concentration of agonist causing a contraction representing 20% of the reference contraction to 60 mM KCl, or causing a relaxation representing 20% of the reference relaxation to 100 μM papaverine) was calculated using the Michaelis–Menten equation and nonlinear regression that included all the data points. The apparent antagonist dissociation constants were determined according to the equation $\text{p}K_b = -\log[\text{Ant}] / (\text{dose ratio} - 1)$. [Ant] represents the concentration of the antagonist and dose ratio the ED₅₀ of the agonist in the presence of the antagonist divided by the ED₅₀ in the absence of the antagonist. Statistical analysis was performed by two-tailed Student's *t*-test for control and treatment comparisons, and by ANOVA1 or ANOVA2 analysis for multiple comparisons, followed by a Newman–Keuls or a Bonferroni *post-hoc* test, respectively, where appropriate. Differences were considered to be statistically significant when P was < 0.05 .

Results

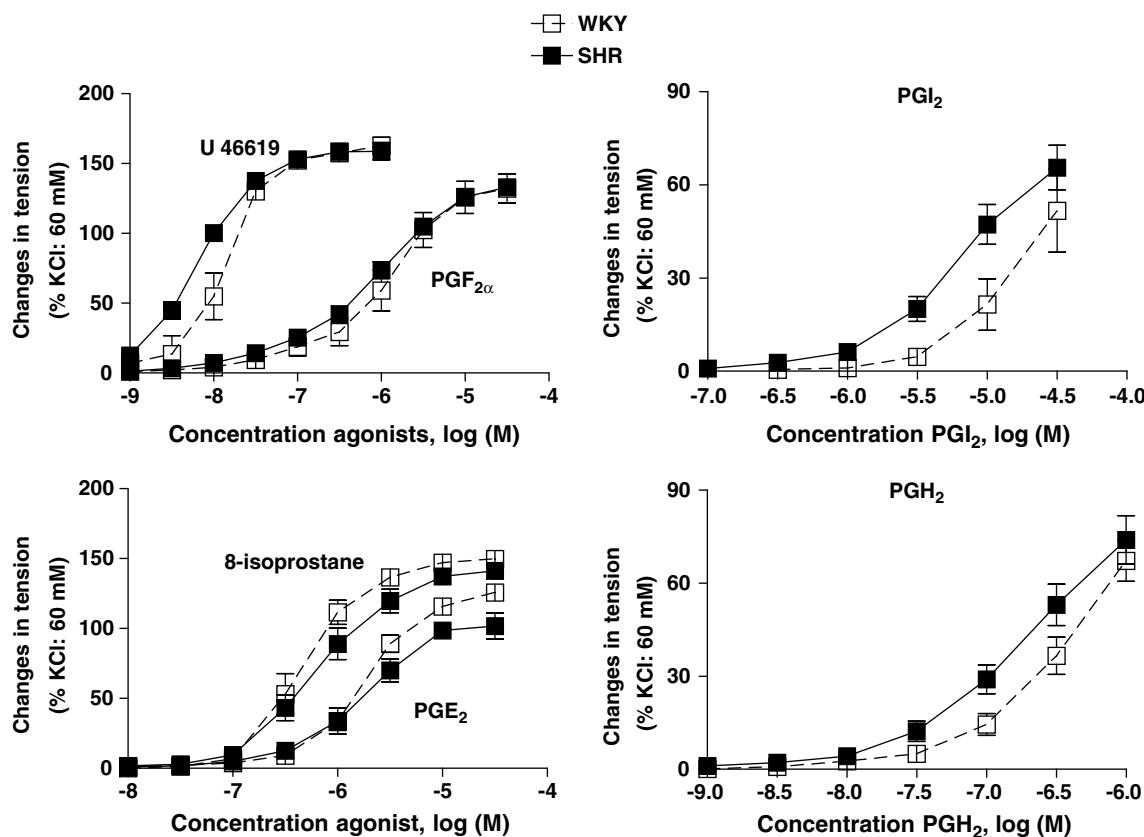
Acetylcholine-induced endothelium-dependent contractions

In the presence of L-nitro-arginine, contractions in response to acetylcholine were observed in rings with, but not without, endothelium. They were transient and the maximal amplitude was observed for concentrations of acetylcholine ranging from 3 to 30 μM . They were usually smaller than the reference contraction to KCl (60 mM) (Figure 1).


Figure 1 Tracings showing the transient contractions evoked by half-log cumulative addition of acetylcholine (10 nM–100 μM, top), PG_I₂ (100 nM–30 μM, middle) and PGH₂ (1 nM–1 μM, bottom) in rings with endothelium of SHR aortas, in the presence of L-NA (100 μM). KCl (60 mM) represents the reference contraction.

Prostanoids-induced changes in tension

U 46619 (0.1 nM–1 μM), 8-isoprostanate (0.1 nM–30 μM), PGF_{2α} (1 nM–30 μM), PGH₂ (1 nM–1 μM), PGE₂, PGD₂ and PG_I₂ (10 nM–30 μM) produced concentration-dependent contractions of aortic rings of both WKY and SHR (Figure 2). However, neither iloprost nor 6-keto-PGF_{1α}, up to 30 μM evoked a significant contraction (data not shown). In SHR rings (in the presence or absence of the endothelium), the order of potency of the agonists was U 46619>8-isoprostanate=PGF_{2α}=PGH₂>PGE₂=PGD₂>PG_I₂, and was similar to that observed in aortas of the WKY: U 46619>8-isoprostanate>PGF_{2α}=PGH₂>PGE₂=PGD₂>PG_I₂. The contractions elicited by PG_I₂ and PGH₂ were transient (Figure 1), while those in response to U 46619, 8-isoprostanate, PGD₂, PGF_{2α} and PGE₂ (data not shown) were sustained. U 46619, PG_I₂ and PGH₂ were significantly more potent in the SHR than in WKY (Figure 3). The contractions in response to all the prostanoids tested were potentiated by removal of the endothelium (Table 1) or by the presence of L-NA (100 μM, data not shown).


In SHR rings without endothelium, S 18886 (0.3–30 nM) produced a rightward shift of the concentration–response curves elicited by U 46619 and 8-isoprostanate. In both cases, the slope of the Schild's plot was significantly different from unity, indicating that the antagonism was not competitive. The pK_b values calculated with the lowest concentrations of S 18886 versus U 46619 and 8-isoprostanate were similar, 9.3 and 9.6, respectively ($n=4$). At the concentration of 100 nM, S 18886 virtually abolished the contractions in responses to all the other prostanoids studied, that is PGE₂, PGF_{2α}, PGH₂ and PG_I₂ (data not shown).

In phenylephrine-contracted rings of SHR and WKY, with and without endothelium, and in the presence or not of S

Figure 2 Concentration–response curves to various prostanoid analog in aortic rings without endothelium of WKY (top) and SHR (bottom). Data are shown as mean±s.e.m. of at least four different experiments.

18886, PG_I₂ (up to 10 μM) and iloprost (up to 3 μM) did not produce a significant relaxation (data not shown). However, under the same experimental conditions, isoproterenol produced a concentration-dependent relaxation in both rings with and without endothelium (ED_{20} : 7.6 and 6.5 and maximal

Figure 3 Concentration–response curves to U 46619 and PGF_{2 α} (top left), 8-isoprostanate and PGE₂ (bottom left) PGI₂ (top right) and PGH₂ (bottom, right) in aortic rings without endothelium of WKY and SHR. Data are shown as mean \pm s.e.m. of at least four different experiments.

relaxation in % of papaverine: 72.3 ± 3.2 and 32.3 ± 3.4 ; $n=5$, in SHR rings with and without endothelium, respectively).

Acetylcholine-induced release of prostaglandins

Acetylcholine ($10 \mu\text{M}$) evoked the release of 6-keto-PGF_{1 α} (stable metabolite of PGI₂), thromboxane B₂ (stable metabolite of thromboxane A₂), PGE₂ and PGF_{2 α} in the aorta of both WKY and SHR. This release was endothelium-dependent in both strains. The release of PGI₂ was 10–100 times larger than that of the other prostaglandins. Furthermore, in contrast to that of thromboxane A₂, PGE₂ and PGF_{2 α} , the release of PGI₂ was significantly larger in SHR than in WKY aortas (Figure 4). The release of 8-isoprostanate, as assessed with the EIA kit, was within a similar range to that of thromboxane A₂, that is small but measurable ($<200 \text{ pg ml}^{-1}$), and appeared both endothelium- and acetylcholine-dependent. However, these findings were not confirmed by direct measurement of 8-isoprostanate by mass spectrometry (data not shown). PGD₂ levels, as assessed with the EIA kit, were low, around the threshold for detection ($<20 \text{ pg ml}^{-1}$; data not shown).

Thromboxane A₂

In SHR aortic rings, dazoxiben ($10 \mu\text{M}$) abolished the acetylcholine-dependent release of thromboxane A₂ without affecting that of PGI₂ or PGE₂. However, the endothelium-dependent contractions in response to acetylcholine (presence

of L-NA, $100 \mu\text{M}$) were not affected by the presence of the thromboxane synthase inhibitor (Figure 5).

Prostacyclin

In both WKY and SHR aortas, acetylcholine induced a concentration- and endothelium-dependent release of PGI₂ and contractions that were superimposable (Figure 6). The acetylcholine-induced endothelium-dependent release of PGI₂ was dependent on the endothelial mass and half of the acetylcholine-induced endothelium-dependent release of PGI₂ occurred within 5 min following stimulation with acetylcholine (data not shown).

The acetylcholine-induced release of PGI₂ was unaffected by the presence of $100 \mu\text{M}$ L-NA (4927 ± 1882 and $3880 \pm 961 \text{ pg ml}^{-1} \text{ mg aorta}^{-1}$, $n=6$ in the absence and presence of L-NA, respectively) or 100 nM S 18886 (3768 ± 462 and $4001 \pm 430 \text{ pg ml}^{-1} \text{ mg aorta}^{-1}$, $n=7$ in the absence and presence of S 18886, respectively). However, the preferential cyclooxygenase-2 blocker, NS 398 ($1 \mu\text{M}$), produced a partial but statistically significant inhibition of both the basal and acetylcholine-stimulated production of PGI₂, while the preferential COX-1 inhibitor, valeryl salicylate (3 mM), or the nonselective inhibitor, indomethacin ($5 \mu\text{M}$), abolished it (Figure 7).

In the SHR aorta, tranylcypromine ($100 \mu\text{M}$), a putative inhibitor of the PGI-synthase did not significantly alter the acetylcholine-dependent production of either PGI₂ (acetylcholine $10 \mu\text{M}$: 3085 ± 586 and $4116 \pm 366 \text{ pg ml}^{-1} \text{ mg aorta}^{-1}$, $n=5$

Table 1 Prostanoids-induced contractions in aortic rings with and without endothelium of WKY and SHR

Prostaglandins	With endothelium -log (ED ₂₀)	Without endothelium -log (ED ₂₀)
<i>U 46619</i>		
WKY (n=4)	7.67	8.34*
SHR (n=4-20)	8.32 [#]	8.86* [#]
<i>PGH₂</i>		
WKY (n=5)	6.13	6.86*
SHR (n=5-9)	6.16	7.24* [#]
<i>PGF_{2α}</i>		
WKY (n=4)	5.59	6.80*
SHR (n=5)	6.29	7.15*
<i>8-Isoprostanate</i>		
WKY (n=6)	6.24 [#]	6.86*
SHR (n=11)	6.10	6.84*
<i>PGE₂</i>		
WKY (n=5)	5.80	6.20* [#]
SHR (n=5)	5.89	6.27*
<i>PGD₂</i>		
WKY (n=5)	5.38	6.36*
SHR (n=5)	5.74	6.24*
<i>PGI₂</i>		
WKY (n=5)	<4.5	5.03*
SHR (n=8-14)	<4.5	5.53* [#]

The ED₂₀ is the concentration of agonist causing a contraction representing 20% of the reference contraction to KCl (60 mM); *n* indicates the number of animals from which tissues were taken. The statistical analysis was performed on the whole dose-response curves (ANOVA 2 followed by Bonferroni post-tests for paired or unpaired experiments). *Indicates a statistically significant difference between vessels with and without endothelium, while [#]indicates that the contractions in response to a given prostanoid were larger in the strain of rat which has been labeled. These two labelings do not necessarily indicate a statistically significant difference at the level of the ED₂₀.

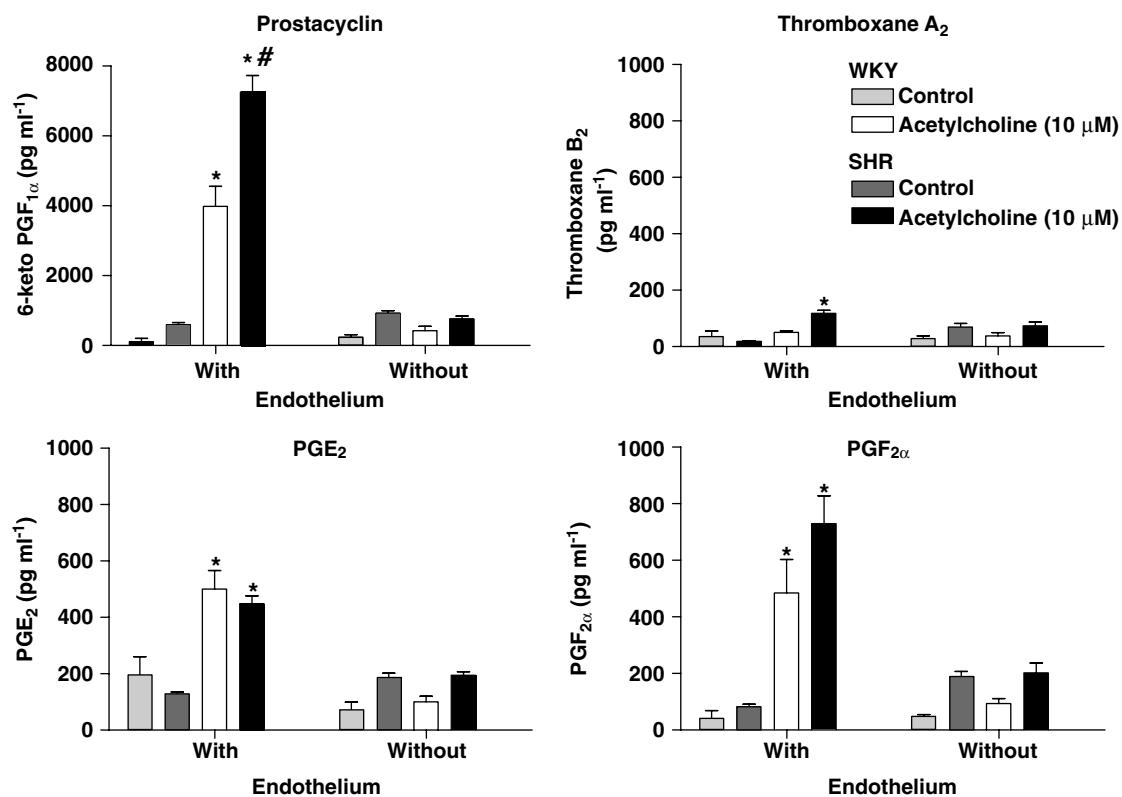
in the absence and presence of tranylcypromine, respectively) or PGE₂ (data not shown). U 51605, a combined inhibitor of PGI- and thromboxane A₂ synthases, produced a concentration-dependent inhibition of PGI₂ release, which was statistically significant at each of the concentrations tested (0.5–10 μ M), while the inhibition of thromboxane A₂ production was statistically significant only at the two highest concentrations (3 and 10 μ M; Figure 8). By contrast, U 51605 (0.5, 1, 3 and 10 μ M) produced a statistically significant increase in acetylcholine-induced release of PGE₂ and PGF_{2 α} (Figure 9).

In the SHR aorta without endothelium, U 51605 (10 nM–10 μ M) produced a concentration-dependent contraction (–log ED₂₀: 7.29), which was abolished in the presence of S 18886 (100 nM; data not shown). Additionally, U 51605 (0.5–3 μ M) produced a concentration-dependent noncompetitive inhibition of U 46619-induced contraction, which was statistically significant at each of the concentrations of U 51605 tested (pK_b value calculated for U 51605 at the concentration of 0.5 μ M: 6.6; Figure 10).

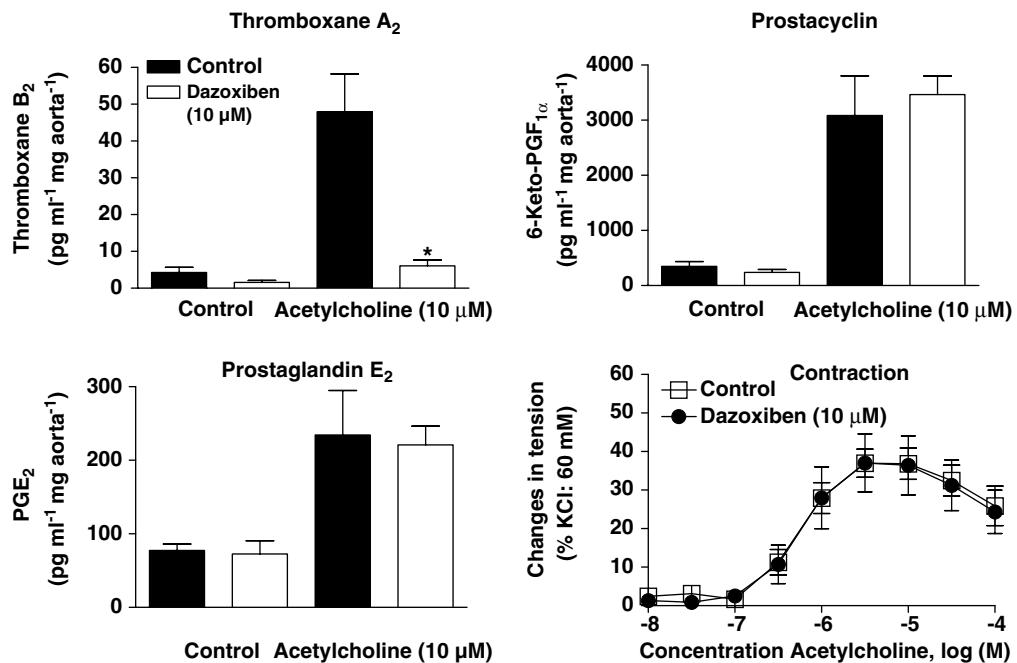
Acetylcholine-induced endothelium-dependent contractions (10 nM–100 μ M) were significantly potentiated by the presence of 0.5 μ M U 51605, were not significantly affected by 1 μ M

U 51605 and were significantly inhibited by 3 μ M U 51605 (Figure 10). In the SHR aorta with endothelium contracted with phenylephrine, U 51605, up to 3 μ M, did not affect the endothelium-dependent relaxations induced by acetylcholine (data not shown).

Discussion


The present study demonstrates that, in the SHR aorta, PGI₂ qualifies as one endothelium-derived contractile factor released by acetylcholine.

In the isolated aortic rings of SHR and WKY, the various prostaglandins studied, that is, U 46619, PGH₂, PGF_{2 α} , PGE₂, PGD₂, PGI₂ as well as 8-isoprostanate, all activate the TP receptors on vascular smooth muscle to cause contraction, since the contractions were blocked by the specific TP receptor antagonist, S 18886 (Simonet *et al.*, 1998).


The thromboxane A₂ analog, U 46619 is by far the most potent vasoconstrictor among the various prostanoids studied. Acetylcholine induced a small but measurable endothelium-dependent release of thromboxane B₂, the stable metabolite of thromboxane A₂, which was fully and selectively blocked by the thromboxane synthase blocker, dazoxiben. Whether or not the generation of thromboxane A₂ was truly of endothelial origin or from the transcellular metabolism of PGH₂, by platelets adhering to the endothelium (Pfister *et al.*, 2002) or by the smooth muscle cells themselves, is unknown. However, this production of thromboxane A₂ did not contribute to the acetylcholine-induced endothelium-dependent contraction, since an effective concentration of dazoxiben did not influence the cholinergic response (see also: Lüscher & Vanhoutte, 1986; Koga *et al.*, 1989; Auch-Schwelck *et al.*, 1990; Kato *et al.*, 1990).

8-isoprostanate (8-*epi*PGF_{2 α}) is produced from the oxidative modification of polyunsaturated fatty acids *via* a free radical-catalyzed mechanism (Morrow *et al.*, 1990). Under some circumstances, 8-isoprostanate could be a direct product of COX or an indirect consequence of superoxide anion production by COX-mediated metabolism (Watkins *et al.*, 1999). In both WKY and SHR aortic rings, 8-isoprostanate was a potent constrictor. First EIA dosages were consistent with an acetylcholine-stimulated and endothelium-dependent release of this prostanoid, supporting the hypothesis that an isoprostanate could be the EDCF released by acetylcholine (Janssen, 2002). However, the results of this dosage were not confirmed by mass spectrometry analysis, suggesting that the data provided by the EIA kit should be attributed to the cross-detection of another prostaglandin(s) species. This discrepancy in the measurement of 8-isoprostanate with an immunoassay kit and by mass spectrometry has been previously reported (Il'Yasova *et al.*, 2004). Therefore, in the SHR aorta, 8-isoprostanate is not the EDCF released by acetylcholine.

PGI₂ is generally described as an endothelium-derived vasodilator, which, by stimulating its receptor (PGI₂ receptors or IP receptors) and activating adenylate cyclase, elevates intracellular cyclic-AMP concentration and produces smooth muscle relaxation (Wise & Jones, 1996). However, in WKY and SHR, neither PGI₂ nor its stable analog iloprost was able to produce a relaxation. These results confirm earlier observations showing that IP receptor agonists cannot evoke relaxation in the aorta of these two strains of rats, at least

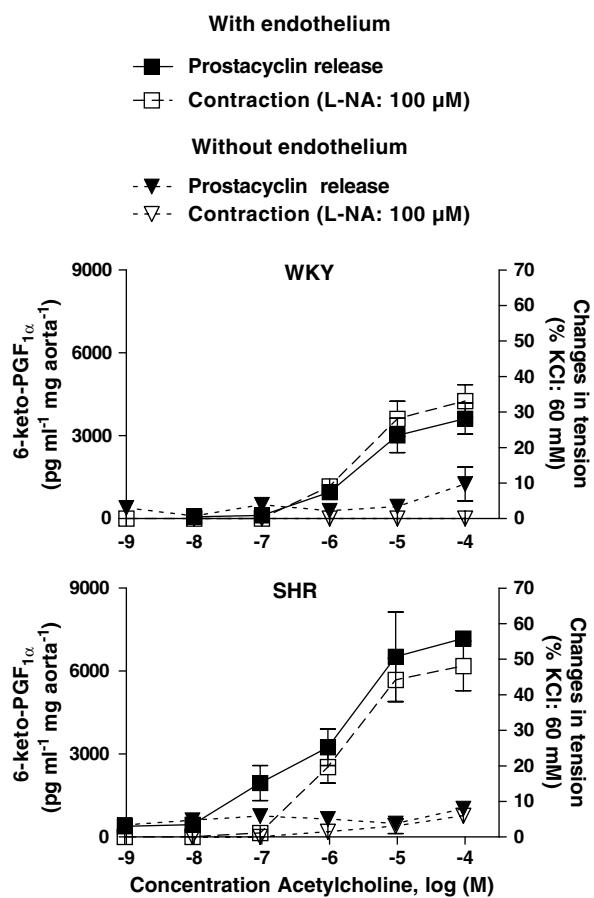

Figure 4 Basal and acetylcholine-dependent release of prostaglandins (PGI₂, PGE₂, thromboxane A₂ and PGF_{2α}) in aortic rings, with and without endothelium, of WKY and SHR. Data are shown as mean \pm s.e.m. of at least four different experiments. The * indicates a significant effect of acetylcholine and # a significant difference between WKY and SHR.

Figure 5 Effects of dazoxiben (10 μM) on the basal and acetylcholine-dependent release of thromboxane A₂ (a), PGI₂ (b) and PGE₂ (c), as well as the acetylcholine-induced endothelium-dependent contraction in the aortic rings with endothelium of SHR (d). Contractile experiments were performed in the presence of L-NA (100 μM). Data are shown as mean \pm s.e.m. of at least five different experiments. The * indicates a significant effect of dazoxiben.

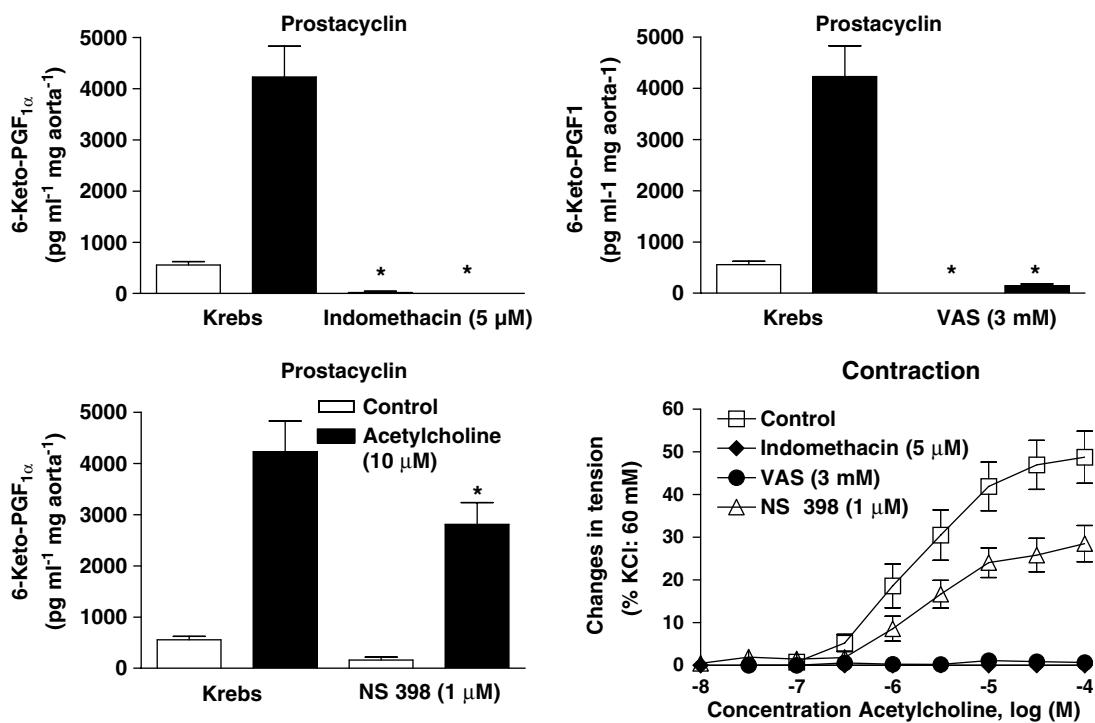
when older than 15 weeks (Levy, 1980; Rapoport & Williams, 1996). In both WKY and SHR, the IP receptor gene expression decreases with age and, at any given age, is

systematically less expressed in SHR than in WKY (Numaguchi *et al.*, 1999). The present study supports the hypothesis of a dysfunction linked to the IP receptor itself, since the aorta

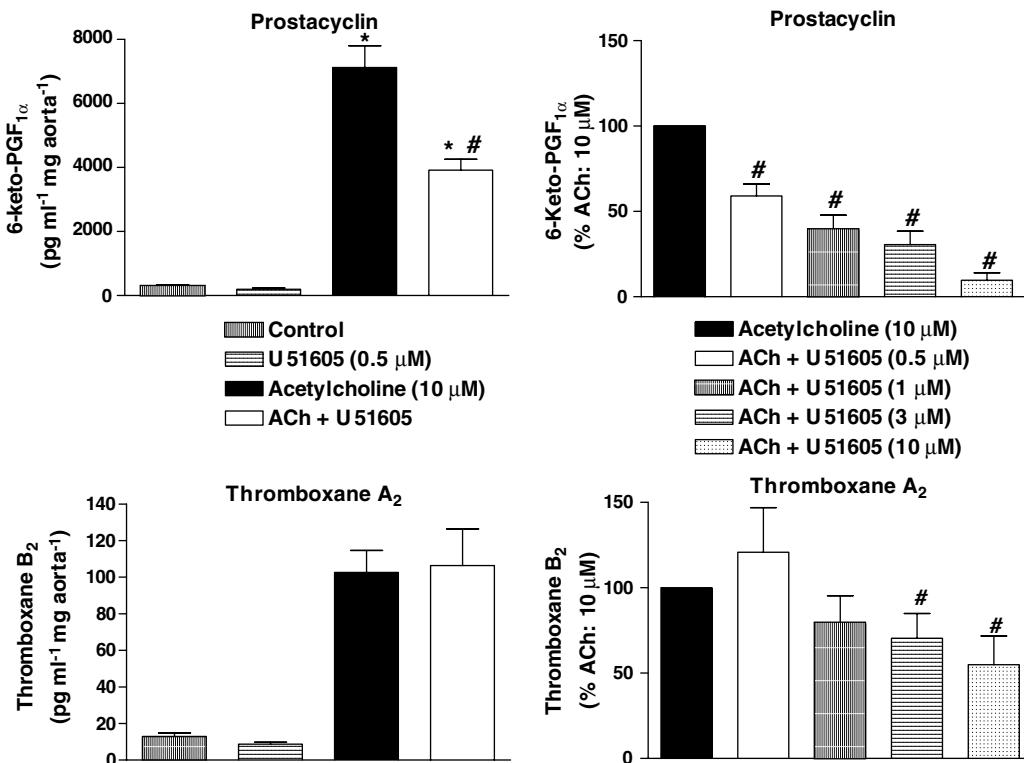
Figure 6 PGI_2 release (left Y-axis) and acetylcholine-induced contraction (right Y-axis) in aortic rings with and without the endothelium of WKY (top) and SHR (bottom). Contractions were obtained in the presence of L-NA (100 μM). Data are shown as mean \pm s.e.m. of at least three different experiments.

from both strains did relax in response to isoproterenol, a β -adrenoceptor agonist which also evokes cyclic-AMP-dependent relaxation.

PGI_2 evokes contractions in various vascular preparations including human coronary arteries (Pomerantz *et al.*, 1978; Davis *et al.*, 1980; Zhao *et al.*, 1996). In smooth muscle cells of the guinea-pig carotid artery, PGI_2 , but not iloprost, induces TP receptor-dependent depolarization and firing of action potentials (Corriu *et al.*, 2001). The present study confirms that in the aorta of both WKY and SHR, PGI_2 produces also contractions *via* the activation of TP receptors (Levy, 1980; Williams *et al.*, 1994; Zhao *et al.*, 1996), and shows that it is more potent in SHR than in WKY.


Acetylcholine produced a concentration-dependent release of PGI_2 . This release was fully endothelium-dependent and was markedly larger than the release of any of the other prostaglandins (i.e. thromboxane A₂, PGE₂, PGF_{2 α} or PGD₂). This observation is consistent with previous report indicating that in most blood vessels PGI_2 is the principal metabolite of arachidonic acid, the endothelial cells being the predominant site of its synthesis (Moncada *et al.*, 1976). The release of PGI_2 was significantly larger in SHR than in WKY aortas (about two-fold) at any given concentration of acetylcholine tested. The acetylcholine-induced endothelium-dependent contraction and endothelium-dependent release of PGI_2 were super-

imposable for both SHR and WKY. The time course of PGI_2 release was rapid and compatible with the time course of endothelium-dependent contractions. Furthermore, the endothelium-independent contraction elicited by exogenously added PGI_2 mimicked the endothelium-dependent contractions elicited by acetylcholine. These contractions were in both cases transient of small magnitude and virtually abolished by the presence of a functional NO-synthase. By contrast, contractions in response to U46619, 8-isoprostanate, PGE₂, PGF_{2 α} or PGD₂ were sustained and slowly developing. Furthermore, if the endothelium-derived NO, a potent functional antagonist, produces a marked rightward shift of the concentration-response curves of these prostaglandins, it virtually abolishes the contractions to PGI_2 and the endothelium-dependent contractions to acetylcholine. Therefore, the release of PGI_2 could explain the endothelium-dependent contractions in response to acetylcholine. In both cases, the transient nature of the contraction can be due to the rapid degradation of PGI_2 into its inactive metabolite 6-keto-PGF_{1 α} . Furthermore, the release of a weak agonist of the TP receptor, such as PGI_2 , may explain the relatively small amplitude of the endothelium-dependent contractions in response to acetylcholine.


The release of PGI_2 was not affected by the inhibition of NO-synthase, consistent with an exclusive role of NO as a functional antagonist of the EDCF response (Yang *et al.*, 2004), or by S 18886, the TP receptor antagonist, in agreement with the observation that the activation of the TP receptor mediates the effect of EDCF on smooth muscle cells, but does not contribute to the endothelial production of the factor (Yang *et al.*, 2003b). The pattern of inhibition of PGI_2 release by COX inhibitors was identical to that of the endothelium-dependent contractions, that is, partial inhibition by the preferential COX-2 inhibitor, NS 398, and complete inhibition either by the preferential COX-1 inhibitor, VAS, or the nonselective inhibitor, indomethacin (Yang *et al.*, 2002). Whether the partial inhibition by the COX-2 inhibitor should be attributed to a contribution of this enzyme, which is expressed in the endothelium of aging and hypertensive rats (Heymes *et al.*, 2000; Alvarez *et al.*, 2005), or to an ancillary effect of NS 398 on COX-1 remains to be determined. Taken into conjunction, these results substantiate the suggestion of Rapoport and Williams (1996) that PGI_2 is one of the EDCFs released by acetylcholine in the aorta of SHR and WKY.

However, Kato *et al.* (1990) as well as Ge *et al.* (1995) have proposed that PGH₂ must be the EDCF released by acetylcholine. This proposal was based on the indirect measurement of PGH₂ release and on the observation that the endoperoxide was a more potent contracting agent in SHR than in WKY. The present study confirms the latter observation and shows that the transient contractile response mimics the acetylcholine-induced endothelium-dependent contractions.

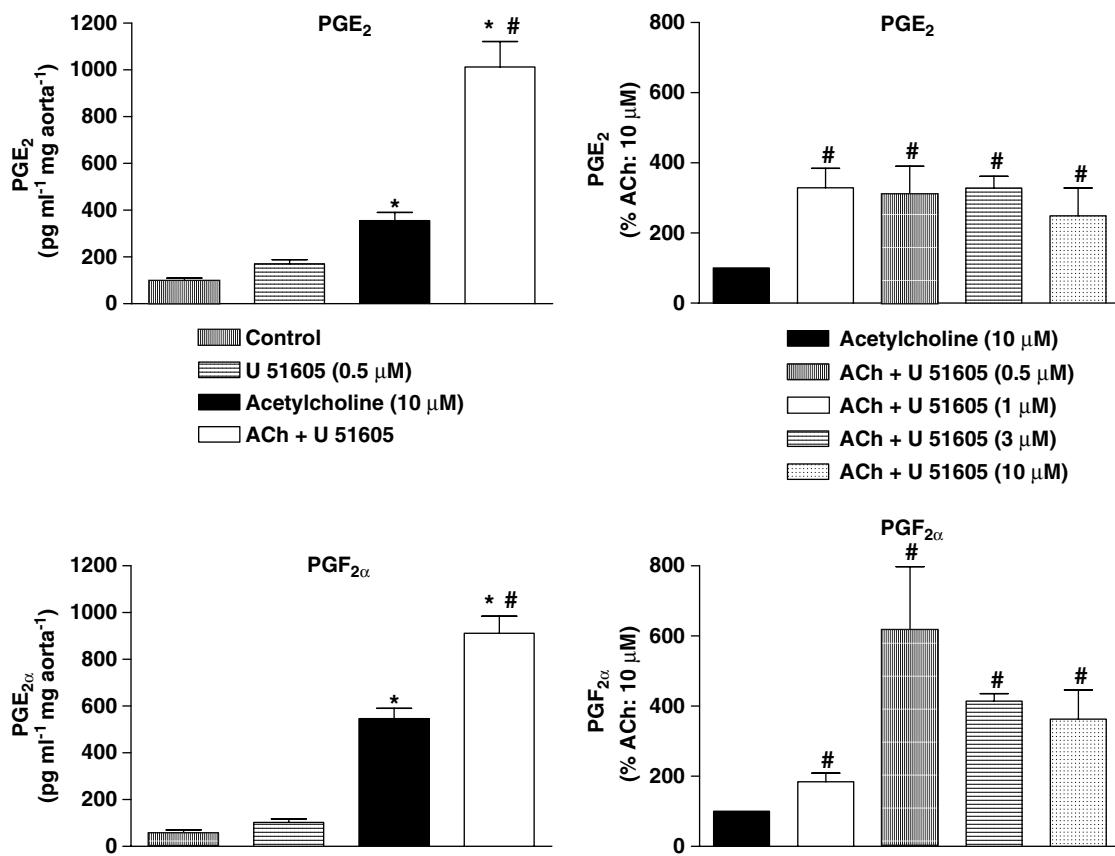
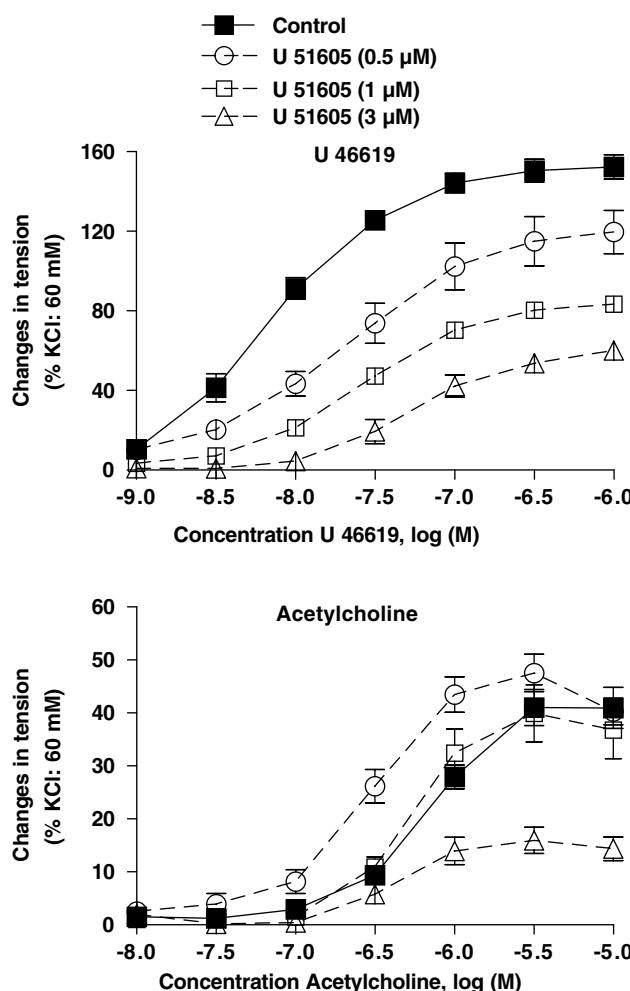

PGH₂ is an unstable prostaglandin which is spontaneously or enzymatically transformed in the more stable isomer PGE₂ and in the presence of mild reducing agents, such as SnCl₂, is converted to PGF_{2 α} (Hamberg *et al.*, 1974; Ge *et al.*, 1995; Camacho *et al.*, 1998). The amount of PGH₂ can be estimated, theoretically, from the difference in PGF_{2 α} production in the absence and presence of SnCl₂. In the present study, the presence of SnCl₂ (1 mM) produced unspecific effects and did not allow a proper quantification of prostaglandin release or a proper recording of changes in isometric tension (unpublished observations). In endothelial cells, if the constitutive presence

Figure 7 Effects of the COX inhibitors indomethacin (5 μ M, top left), valeryl salicylate (3 mM, top right) and NS 398 (1 μ M, bottom left), on the basal and acetylcholine-dependent release of PGI₂, as well as on the acetylcholine-induced endothelium-dependent contractions (bottom right) in rings with endothelium of SHR aortas. Data are shown as mean \pm s.e.m. of at least six different experiments. The * indicates a significant effect of an inhibitor.

Figure 8 Effects of U 51605 at 0.5 μ M (left) and at 1, 3 and 10 μ M (right) on basal and acetylcholine-stimulated release of PGI₂ (top) and thromboxane A₂ (bottom) in isolated aortic rings with endothelium of SHR. Data are shown as mean \pm s.e.m. of at least five different experiments. As the experiments involving the various concentrations of U 51605 were not contemporary, the data shown in the graphs situated on the right-hand side are expressed in percentage of the control acetylcholine response. The * indicates a significant effect of acetylcholine and # a significant effect of U 51605.


Figure 9 Effects of U 51605 at 0.5 μ M (left) and at 1, 3 and 10 μ M (right) on basal and acetylcholine-stimulated PGE₂ (top) and PGF_{2 α} (bottom) release in aortic rings with endothelium of SHR. Data are shown as mean \pm s.e.m. of at least five different experiments. As the experiments involving the various concentrations of U 51605 were not contemporary, the data shown in the graphs situated on the right-hand side are expressed in percentage of the control acetylcholine response. The * indicates a significant effect of acetylcholine and # a significant effect of U 51605.

of the soluble PGE-synthase associated with COX-1 is debatable, the parallel induction of the membrane-bound form of PGE-synthase with COX-2 is well documented (Soler *et al.*, 2000; Murakami *et al.*, 2002). Since the induction of COX-2 has been suggested in the aorta of SHR and aging WKY (Heymes *et al.*, 2000; Alvarez *et al.*, 2005), the production of PGE₂ might be of enzymatic origin. However, it cannot be excluded that the rate of formation of PGH₂ exceeds its metabolism. If one assumes that, under the present experimental conditions, the entire production of PGE₂ is a perfect surrogate for the endothelial production of PGH₂, this production is roughly 30 times less than that of PGI₂. Although PGH₂ is approximately 30 times more potent than PGI₂ in producing contraction, it is difficult to attribute an exclusive role to the endoperoxide in acetylcholine-induced endothelium-dependent contractions.

In the spontaneous hypertensive rat, the augmented responsiveness to endoperoxides, unlike the overexpression of COX-1, is already present in the aorta of prehypertensive animals (Iwama *et al.*, 1992; Jameson *et al.*, 1993; Ge *et al.*, 1999). Thus, this hyper responsiveness may constitute a genetic platform for the disease. By contrast, the overexpression of COX probably reflects an adjustment to the chronic hypertensive process, resulting in premature aging of the endothelial cells. This interpretation is reinforced by the observations that endothelium-dependent contractions appear also in arteries of

aging normotensive animals (Koga *et al.*, 1989; Fujii *et al.*, 1999; Heymes *et al.*, 2000). The resulting massive increase in PGI₂ production is associated with the disappearance of functional IP receptors leading to relaxation. Taken in conjunction, these observations suggest that both PGI₂ and PGH₂ can contribute to the acetylcholine-induced endothelium-dependent contractions.

In order to determine more precisely the contribution of PGI₂ in the endothelium-dependent contractions evoked by acetylcholine, it was attempted to inhibit PGI synthase. The monoamine oxidase inhibitor and antidepressant tranylcypromine, at the concentration used in the present study, is often presented as a nonspecific inhibitor of this enzyme (Garcia-Cohen *et al.*, 2000). However, under the present experimental conditions, tranylcypromine did not affect the production of PGI₂ or PGE₂, confirming previous observations in the same artery (Rapoport & Williams, 1996), and precluding its utilization. U 51605 is a stable analog of PGH₂ and a partial agonist at TP receptors (Huzaar-Akbar *et al.*, 1985; Mukhopadhyay *et al.*, 1985), properties which were confirmed in the present study. U 51605 produced a concentration-dependent inhibition of PGI₂ release and for the two highest concentrations tested also that of thromboxane A₂, indicating that this compound is a preferential inhibitor of PGI synthase (Gorman *et al.*, 1977; 1979). Since dazoxibenz, the specific thromboxane synthase inhibitor, did not affect the acetylcholine-induced

Figure 10 Effects of U 51605 in SHR isolated aortic rings. Concentration-dependent inhibition of U 46619-induced contraction in isolated aortic rings without endothelium by U 51605 (0.5, 1 and 3 μ M; top). Effects of U 51605 (0.5, 1 and 3 μ M) on the endothelium-dependent contractions to acetylcholine (presence of L-NA: 100 μ M, bottom). Data are shown as mean \pm s.e.m. of at least five different experiments.

endothelium-dependent contractions, this compound could be considered as a useful tool to investigate the role of protacyclin in these contractions. Importantly, U 51605 did not interact with the endothelial muscarinic receptor since this drug did not affect the endothelium-dependent relaxation in response to acetylcholine.

U 51605 at 0.5 μ M, the lowest concentration tested, significantly blocked the TP receptor and produced a 50% inhibition of PGI₂ release. Paradoxically, the inhibition of the release of PGI₂, the putative EDCF and the concomitant blockade of TP receptors were associated with an enhancement of the endothelium-dependent contractions to acetylcholine. This paradox is only apparent since the inhibition of PGI₂ release was compensated by a major increase in PGE₂ and PGF_{2 α} production. In endothelial cells, the inhibition of PGI synthase consistently leads to an increase in PGE₂ production (Zou *et al.*, 1999; Bachschmid *et al.*, 2003). Again, whether or not the release of PGE₂ and PGF_{2 α} could be solely attributable

EDCF in SHR

to the nonenzymatic transformation of PGH₂ or is partially linked to the activation of endothelial PG synthases and/or the transcellular metabolism of PGH₂ by the underlying smooth muscle cells is unknown.

U 51605 at 1 μ M did not potentiate, and at 3 μ M inhibited the acetylcholine-induced endothelium-dependent contractions, most likely because of the overwhelming antagonistic properties of this compound toward TP receptors. Additionally, the fact that U 51605 does not produce a concentration-dependent increase in PGE₂ and PGF_{2 α} production while the inhibition of PGI₂ release was concentration-dependent may indicate other nonspecific properties of U 51605.

In conclusion, the endothelium-dependent contractions elicited by acetylcholine in the aorta of SHR and aging WKY most likely involve at least in part the release of PGI₂. This conclusion is based on the following: (a) in WKY and SHR, PGI₂ is a contracting but not a relaxing factor; (b) PGI₂ is a more potent contracting agent in SHR than in WKY; (c) the contractions evoked by PGI₂ mimic the endothelium-dependent contractions produced by acetylcholine both in terms of duration and amplitude; (d) the PGI₂ and the endothelium-dependent contractions both involve activation of TP receptors; (e) PGI₂ is the most abundant prostaglandin released by acetylcholine and is of endothelial origin; (f) the release of PGI₂ is two times larger in SHR than in WKY; (g) the time course of the release of PGI₂ is compatible with the time course of the observed endothelium-dependent contractions; (h) the release of PGI₂ correlates with the amplitude of the endothelium-dependent contractions over the full concentration range of acetylcholine in both WKY and SHR; (i) the endothelium-dependent contractions and the release of PGI₂ are affected similarly by COX inhibitors; and (j) the inhibition of PGI₂ synthesis enhances the acetylcholine-induced endothelium-dependent contractions. Paradoxically, this observation also supports the hypothesis that PGI₂ contributes to endothelium-dependent contractions, since the inhibition of PGI-synthase may enhance PGH₂ spillover, a more potent TP receptor agonist than PGI₂ itself. This hypothesis that PGI₂ is an EDCF is in agreement with a recent study suggesting that PGI₂ is the main factor accounting for endothelial dysfunction in the SHR aorta (Blanco-Rivero *et al.*, 2005).

PGH₂ most likely contributes also to the endothelium-dependent contractions evoked by acetylcholine. Most of the arguments developed above for a contribution of PGI₂ apply also for PGH₂. Nevertheless, although it is difficult to quantify exactly the extent of PGH₂ production, the amount released in response to acetylcholine is 30–100 times less than that of PGI₂. However, under conditions when the PGI-synthase activity is inhibited, either pharmacologically (U 51605) or under pathological conditions (for instance, following the peroxynitrate-dependent tyrosine nitration of the enzyme; Zou *et al.*, 2002), the contribution of PGH₂ will increase and so will the amplitude of the endothelium-dependent contractions.

We thank M. Gaudin and M. Germain for technical assistance. Dr J. Morrow was supported by NIH grants DK48831, GM15431, CA77839, RR00095.

References

ALVAREZ, Y., BRIONES, A.M., BALFAGON, G., ALONSO, M.J. & SALAICES, M. (2005). Hypertension increases the participation of vasoconstrictor prostanoids from cyclooxygenase-2 in phenylephrine responses. *J. Hypertens.*, **23**, 767–777.

AUCH-SCHWELK, W., KATUSIC, Z.S. & VANHOUTTE, P.M. (1990). Thromboxane A₂ receptor antagonists inhibit endothelium-dependent contractions. *Hypertension*, **15**, 699–703.

BACHSCHMID, M., THURAU, S., ZOU, M.H. & ULLRICH, V. (2003). Endothelial cell activation by endotoxin involves superoxide/NO-mediated nitration of prostacyclin synthase and thromboxane receptor stimulation. *FASEB J.*, **17**, 914–916.

BLANCO-RIVERO, J., CACHOFEIRO, V., LAHERA, V., ARAS-LOPEZ, R., MARQUEZ-RODAS, I., SALAICES, M., XAVIER, F.E., FERRE, M. & BALFAGON, G. (2005). Participation of prostacyclin in endothelial dysfunction induced by aldosterone in normotensive and hypertensive rats. *Hypertension*, **46**, 107–112.

CAMACHO, M., LOPEZ-BELMONTE, J. & VILA, L. (1998). Rate of vasoconstrictor prostanoids released by endothelial cells depends on cyclooxygenase-2 expression and prostaglandin I synthase activity. *Circ. Res.*, **83**, 353–365.

CORRIU, C., FELETOU, M., EDWARDS, G., WESTON, A.H. & VANHOUTTE, P.M. (2001). Differential effects of Prostacyclin and Iloprost in the isolated carotid artery of the guinea-pig. *Eur. J. Pharmacol.*, **426**, 89–94.

DAVIS, K., GRINSBURG, R., BRISTOW, M. & HARRISON, D.C. (1980). Biphasic action of prostacyclin in the human coronary artery. *Clin. Res.*, **28**, 165A.

FUJII, K., ONAKA, U., ABE, I. & FUJISHIMA, M. (1999). Eicosanoids and membrane properties in arteries of aged spontaneously hypertensive rats. *J. Hypertens.*, **17**, 75–80.

GARCIA-COHEN, E.-C., MARIN, J., DIEZ-PICAZO, L.D., BAENA, A.B., SALAICES, M. & RODRIGUEZ-MARTINEZ, M.A. (2000). Oxidative stress induced by tert-butyl hydroperoxide causes vasoconstriction in the aorta from hypertensive and aged rats, role of cyclooxygenase-2 isoform. *J. Pharmacol. Exp. Ther.*, **293**, 75–81.

GE, T., HUGHES, H., JUNQUERO, D.C., WU, K.K., VANHOUTTE, P.M. & BOULANGER, C.M. (1995). Endothelium-dependent contractions are associated with both augmented expression of prostaglandin H synthase-1 and hypersensitivity to prostaglandin H₂ in the SHR aorta. *Circ. Res.*, **76**, 1003–1010.

GE, T., VANHOUTTE, P.M. & BOULANGER, C.M. (1999). Increased response to prostaglandin H₂ precedes changes in PGF-synthase 1 expression in the SHR aorta. *Acta Pharmacol. Sin.*, **20**, 1087–1092.

GORMAN, R.R., BUNDY, G.L., PETERSON, D.C., SUN, F.F., MILLER, O.V. & FITZPATRICK, F.A. (1977). Inhibition of platelet thromboxane synthetase by 9,11-azoprosta-5,13-dienoic acid. *Proc. Natl. Acad. Sci. U.S.A.*, **74**, 4007–4011.

GORMAN, R.R., HAMILTON, R.D. & HOPKINS, N.K. (1979). Stimulation of human foreskin fibroblast adenosine 3',5'-cyclic monophosphate levels by prostacyclin (prostaglandin I₂). *J. Biol. Chem.*, **254**, 1671–1676.

HAMBERG, M., SVENSSON, J., WAKABAYASHI, T. & SAMUELSSON, B. (1974). Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. *Proc. Natl. Acad. Sci. U.S.A.*, **71**, 345–349.

HEYMES, C., HABIB, A., YANG, D., MATHIEU, E., MAROTTE, F., SAMUEL, J.-L. & BOULANGER, C.M. (2000). Cyclo-oxygenase-1 and -2 contribution to endothelial dysfunction in ageing. *Br. J. Pharmacol.*, **131**, 804–810.

HUZOOR-AKBAR, MUKHOPADHYAY, A., ANDERSON, K.S., NAVRAN, S.S., ROMSTEDT, K., MILLER, D.D. & FELLER, D.R. (1985). Antagonism of prostaglandin-mediated responses in platelets and vascular smooth muscle by 13-azaprostanoid acid analogues. Evidence for selective blockade of thromboxane A₂ responses. *Biochem. Pharmacol.*, **34**, 641–647.

IL'YASOVA, D., MORROW, J.D., IVANOVA, A. & WAGENKNETCH, L.E. (2004). Epidemiological marker for oxidant status, comparison of the ELISA and the gas chromatography/mass spectrometry assay for urine 2,3-dinor-5,6-dihydro-15-F₂t-isoprostane. *Ann. Epidemiol.*, **14**, 793–797.

IWAMA, Y., KATO, T., MURAMATSU, M., ASANO, H., SHIMIZU, K., TOKI, Y., MIYAZAKI, Y., OKUMURA, K., HASHIMOTO, H., ITO, T. & SAKATE, T. (1992). Correlation with blood pressure of the acetylcholine-induced endothelium-derived contracting factor in the rat aorta. *Hypertension*, **19**, 326–332.

JAMESON, M., DAI, F.X., LÜSCHER, T., SKOPEC, J. & DIEDERICH, A. (1993). Endothelium-derived contracting factors in resistance arteries of young spontaneously hypertensive rats before development of overt hypertension. *Hypertension*, **21**, 280–288.

JANSSEN, L.J. (2002). Are endothelium-derived hyperpolarizing and contracting factors isoprostanes? *Trends Pharmacol. Sci.*, **23**, 59–62.

KATO, T., IWAMA, Y., OKAMURA, K., HASHIMOTO, H., ITO, T. & SAKATE, T. (1990). Prostaglandin H₂ may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the rat. *Hypertension*, **15**, 475–481.

KOGA, T., TAKATA, Y., KOBAYASHI, K., TAKISHITA, S., YAMASHITA, Y. & FUJISHIMA, M. (1989). Age and hypertension promote endothelium-dependent contractions to acetylcholine in the rat aorta of the rat. *Hypertension*, **14**, 542–548.

LEVY, J.V. (1980). Prostacyclin-induced contraction of isolated aortic strips from normal and spontaneously hypertensive rats (SHR). *Prostaglandins*, **19**, 517–5250.

LÜSCHER, T.F. & VANHOUTTE, P.M. (1986). Endothelium-dependent contractions to acetylcholine in the aorta of spontaneously hypertensive rat. *Hypertension*, **8**, 344–348.

MONCADA, S., GRYGLEWSKI, R.J., BUNTING, S. & VANE, J.R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. *Nature*, **263**, 663–665.

MORROW, J.D., HILL, K.E., BURK, R.F., NANNOUR, T.M., BADR, K.F. & ROBERTS II, L.J. (1990). A series of prostaglandins F2-like compounds are produced *in vivo* in humans by a non-cyclooxygenase, free radical catalyzed mechanism. *Proc. Natl. Acad. Sci. U.S.A.*, **87**, 9383–9387.

MUKHOPADHYAY, A., NAVRAN, S.S., AMIN, H.M., ABDEL-AZIZ, S.A., CHANG, J., SOBER, D.J., MILLER, D.D. & FELLER, D.R. (1985). Effects of trimetoquinol analogs for antagonism of endoperoxide/thromboxane A₂-mediated responses in human platelets and rat aorta. *J. Pharmacol. Exp. Ther.*, **232**, 1–9.

MURAKAMI, M., NAKATAMI, Y., TANIOKA, T. & KUDO, I. (2002). Prostaglandin E synthase. *Prostagland. Other Lipid Mediat.*, **68–69**, 383–399.

NUMAGUCHI, Y., HARADA, M., OSANAI, H., HAYASHI, K., TOKI, Y., OKAMURA, K., ITO, T. & HAYAKAWA, T. (1999). Altered gene expression of prostacyclin synthase and prostacyclin receptor in the thoracic aorta of spontaneously hypertensive rats. *Cardiovasc. Res.*, **41**, 682–688.

PFISTER, S.L., HUGHES, M.J., ROSOLOWSKI, M. & CAMPBELL, W.B. (2002). Role of contaminating platelets in thromboxane synthesis in primary culture of human umbilical vein endothelial cells. *Prostagland. Other Lipid Mediat.*, **70**, 39–49.

POMERANTZ, K., SINTEROSE, A. & RAMWELL, P. (1978). The effect of prostacyclin on the human umbilical artery. *Prostaglandins*, **15**, 1035–1044.

RAPOPORT, R.M. & WILLIAMS, S.P. (1996). Role of prostaglandins in acetylcholine-induced contraction of aorta from spontaneously hypertensive and Wistar-Kyoto rats. *Hypertension*, **28**, 64–75.

SIMONET, S., DESCOMBES, J.J., VALLEZ, M.O., DUBUFFET, T., LAVIELLE, G. & VERBEUREN, T.J. (1998). S 1886, a new thromboxane (TP)-receptor antagonist is the active isomer of S 18204 in all species, except in the guinea-pig. In: *Recent Advances in Prostaglandin, Thromboxane, and Leukotriene Research*, ed. Sinzinger *et al.*, pp 173–176. New York, U.S.A.: Plenum Press.

SOLER, M., CAMACHO, M., ESCUDERO, J.-R., INIGUEZ, M.A. & VILA, L. (2000). Human vascular smooth muscle but not endothelial cells express prostaglandin E synthase. *Circ. Res.*, **87**, 504–507.

TADDEI, S. & VANHOUTTE, P.M. (1993). Endothelium-dependent contractions to endothelin in the rat aorta are mediated by thromboxane A₂. *J. Cardiovasc. Pharmacol.*, **22**, S328–S331.

VANHOUTTE, P.M., FELETOU, M. & TADDEI, S. (2005). Endothelium-dependent contractions in hypertension. *Br. J. Pharmacol.*, **144**, 449–458.

WATKINS, M.T., PATTON, G.M., SOLER, H.M., ALBADAWI, H., HUMPHRIES, D.E., EVANS, J.E. & KADOWAKI, K. (1999). Synthesis of 8-epi-prostaglandin F₂_x by human endothelial cells, role of prostaglandin H₂ synthase. *Biochem. J.*, **344**, 747–775.

WILLIAMS, S.P., DORN II, G.W. & RAPOPORT, R.M. (1994). Prostaglandin I₂ mediates contraction and relaxation of vascular smooth muscle. *Am. J. Physiol.*, **267**, H796–H803.

WISE, H. & JONES, R.L. (1996). Focus on prostacyclin and its novel mimetics. *Trends Pharmacol. Sci.*, **17**, 17–21.

YANG, D., FÉLÉTOU, M., BOULANGER, C.M., WU, H.F., LEVENS, N., ZHANG, J.N. & VANHOUTTE, P.M. (2002). Oxygen-derived free radicals mediate endothelium-dependent contractions to acetylcholine in aortas from spontaneously hypertensive rats. *Br. J. Pharmacol.*, **136**, 104–110.

YANG, D., FÉLÉTOU, M., LEVENS, N., ZHANG, J.N. & VANHOUTTE, P.M. (2003b). A diffusible substance(s) mediates endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. *Hypertension*, **41**, 143–148.

YANG, D., GLUAIS, P., ZHANG, J.-N., VANHOUTTE, P.M. & FÉLÉTOU, M. (2004). NO and inactivation of the endothelium-dependent contracting factor released by acetylcholine in SHR. *J. Cardiovasc. Pharmacol.*, **43**, 815–820.

YANG, D., LEVENS, N., ZHANG, J.N., VANHOUTTE, P.M. & FÉLÉTOU, M. (2003a). Specific potentiation of endothelium-dependent contractions in SHR by tetrahydrobiopterin. *Hypertension*, **41**, 136–142.

ZHAO, Y.J., WANG, J., TOD, M.L., RUBIN, L.J. & YUAN, X.J. (1996). Pulmonary vasoconstriction effects of prostacyclin in rats, potential role of thromboxane receptors. *J. Appl. Physiol.*, **81**, 2595–2603.

ZOU, M., JENDRAL, M. & ULLRICH, V. (1999). Prostaglandin endoperoxide-dependent vasospasm in bovine coronary arteries after nitration of prostacyclin synthase. *Br. J. Pharmacol.*, **126**, 1283–1292.

ZOU, M.H., SHI, C. & COHEN, R.A. (2002). High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. *Diabetes*, **51**, 198–203.

(Received May 31, 2005)

Revised July 12, 2005

Accepted August 11, 2005

Published online 12 September 2005)